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Calculation of gravitational forces of a sphere and a plane 

A paper by: Dipl. Ing. Matthias Krause, (CID) Cosmological Independent Department, Germany, 2007 

 

 

Objective 

     The purpose of this paper is to evaluate two methods of gravity calculation in and around a 

sphere. Following a comparison and discussion of results, the gravitational forces of a plane are 

examined. All graphs and illustrations are based on an EXCEL sheet which has been 

programmed to use the discrete calculation method.  

 

Fundamentals of the calculation 

     Two basic methods are available for the calculation of gravitational forces: 

1. The most commonly used center oriented, integral method 

2. Discrete, measuring point oriented method 

 

     The integral, center oriented method relies solely on masses within the visual orbit around the 

center of a single mass point. The discrete calculation method, however, includes all masses 

within the sphere. The ECXEL sheet includes the single calculations for every mass point. These 

are then combined for further calculations.  

 

Figure 1           Figure 2 

 
Center-oriented integral         Measuring point-oriented discrete 
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     The calculation and comparison of results occur in a sphere with 5056 mass points (a plane 

with 357 mass points). Hence, starting from the center, each has 10 measuring points. Similar 

results are to be expected when the different methods are compared. A slight discrepancy caused 

by the nature of discrete calculation will occur, however, it should remain within single digit 

percent values.  

 

Derivation of gravity with the center-oriented, integral method according to Alonso and Finn 

(2000) 

     Students should be familiar with the calculation model, as it is portrait in every science school 

book. Alonso and Finn (2000) derive the formula for gravitational forces in the following way: 

 

       The formulas concerning gravitational forces pertain to single masses only. When 

determining the forces between planets and the sun, for example, the diameter of the 

planets is insignificantly small compared to the vast distances between them. 

Consequently, they can be used as single masses. Nevertheless, with a relatively short 

distance, the volumes and gravitational forces within the planets or spheres need to be 

included. Even Newton himself was unsure of how to accomplish this and postponed 

the publication of his works until he had found a solution - almost two decades later. 

 

The gravitational forces between two masses are calculated with: 

 

       (F1) 

Figure 3 

Calculation of the 

gravitational field for a 

point outside of a mass 

that is evenly 

distributed over a 

hollow sphere 

      

 

 

 

 

 

 

 

 

 

 

The ideal hollow sphere 

center 
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The calculation of a hollow sphere’s gravitational field usually occurs with the help of 

an outside mass P and the division of the sphere’s surface into narrow strips. The 

center of these strips lies on the line between A and B, with the radius  and 

the width . Consequently, the surface of each strip is: length x width or 

 

  

 

With m being the combined mass of the sphere, the mass per surface unit is  and 

the mass of each strip is 

 

. 

 

The points of each strip are at an equal distance R from the point P. Hence, the 

gravitational potential of the strips on the point P is: 

 

  (F1.1) 

 

According to Figure 3,   which means r and a are constant. 

 

   

which leads to 

 

  (F2) 

 

For the integral determination of the whole potential for the sphere surface, the borders 

for R are set as  and .  

 

 for all  (F3) 

 

 

 

If the point P is located within the sphere, the calculation looks as followed: 
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Figure 4 

 
Calculation of the gravitational field for a point P inside of the ideal hollow sphere 

 

The potential of the sphere with the radius R between  and  is 

 

 for  (F4) 

 

This constant value is independent from the location of point P. The modification of 

(F1) leads to the formulas for the field force on the points outside of the sphere surface  

 

    for all    (F5) 

 

and on the inside 

 

    for all   (F6) 

 

A comparison of (F3) and (F5) shows 

 

 Figure 5 

Won’t copy over!! Ask for original 

 

 

 

 

 

The field force and potential of masses are equal for a mass that is distributed 

evenly on the surface and a mass that is inside of a sphere. For all points P inside 

of a hollow sphere, the field force is 0, and the energy is constant.  

 

 

 

 

 

The ideal hollow sphere 

center 
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Figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Differences of G and V as a function of distance from the center of a homogenously 

distributed mass on the surface of a sphere 

 

Coming from the outside toward the center of the sphere, the potential remains 

constant when passing the boundary line of the sphere. (The slope, however, changes 

irregularly.) The gravity G changes immediately in accordance with formula (F5) and 

falls until it reaches a zero value in the center.  

 

Gravity in and around a solid sphere 

 

Figure 6 

 

 

The ideal solid sphere 

center 

 

Calculation of a 

gravitational field for a 

point P outside of the 

solid sphere 
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     The mass of a solid sphere is   , if  describes the mass density. Once 

the surface of the sphere is crossed, the force of the field is equal to .  

 

 

 

 

Under the assumption that the sphere is completely solid and homogenous, we can 

treat it like a sum of thin layers. Each layer exerts a specific field force, which is 

determined with the formulas (F5) and (F6). Since, however, the slices have a 

common center, the distance r from P is the same in each calculation.  

 

 

 

 

     Furthermore, the sphere does not have to be homogenous, as long as the 

distribution of its masses is sphere symmetrical and independent from its direction. 

 

 

Figure 7 

 
Gravity calculation for a point P inside of a solid sphere 

 

In order to determine the field force within a homogenous solid sphere, point P is 

located at a distance to the sphere’s center that is smaller than its radius: . The 

The same applies to the mass distribution in a solid plane. The calculation of 

gravitational forces of sphere and plane are similar.  

 

Therefore, the result of formula (F5) applies, and the entire mass of the sphere 

can be used as a single point mass in the center. 

center 

The ideal solid sphere 
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sphere slices beyond point P do not contribute to the field force on P. The slices 

between the center and P combined deliver a force equal to formula (F5). If m’ is the 

mass of the sphere with the radius r, the field force in P is: 

 

   (F7) 

 

Figure 8 

 

 

 

 

 

 

 

 

The graph in Figure 8 illustrates the differences in G in a solid homogenous sphere as 

function from the distance to the sphere’s center.  

With the volume of a sphere defined as  , the mass m’ can be calculated 

with 

 

’= . 

 

 

The gravitational force or field force within a sphere is calculated with  

 

 
 

Consequently, the field force within a homogenous sphere depends directly on the 

distance from its center (see Figure 8).  

At this point, Alonso and Finn (2000) leave it up to the reader to see that the gravity 

potential on a point outside of the sphere determined with (F4) weighs heavier into any 

calculation than that of a point on the inside.  

 

   for all  

 

Even though errors occur if the examined body has a different symmetry, Alonso and 

Finn (2000) conclude that regardless of any problems with sphere symmetry, the main  
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point is to understand that the gravitational characteristics of a homogenous sphere 

depend on the distance of P to the sphere’s center. The solution of any other problems 

pertaining to gravity calculation is often a symmetry adjustment. Such a simplification 

usually turns the issue into an easy to solve math problem.  

 

Alonso and Finn’s conclusion 

     The purpose of these calculations and derivations is to see if the formulas for 

gravitational forces apply to point masses as well as masses with a larger volume. 

 

 

 

 

 

 

Hence, m and r are known variables and can be used to determine F. 

 

 

Derivation of gravity with the measuring point-oriented discrete calculation method 

     When calculating discretely, a few fundamental evaluations can provide new insight and 

understanding of gravitational forces. Alonso and Fin (2000) introduced two of their results, 

which have been summarized on the last four pages: 

 

1. In the center of a point symmetrical, solid, homogenous sphere gravity is not noticeable.  

2. As long as the masses on the surface of a hollow sphere are distributed evenly, the 

gravity on the inside is equal to zero.  

 

What happens when the masses are not symmetrical? 

 

 1.   Gravity in the center of a point symmetrical sphere 

 

 

All formulas pertaining to the calculation of gravitational forces are valid for 

point masses and masses with volume – under specific circumstances. Spheres 

can be used as point masses if only the masses within the orbit of P are 

considered. The masses beyond this orbit shall not be used. In addition, a sphere 

has to be rotation symmetrical. 

Figure 9 

A point P is located in the center of a point 

symmetrical sphere shaped body. The mass 

distribution is even. The gravitational forces of 

the surrounding masses counteract each other, 

as long as they have the same distance from the 

center and are exactly opposite each other. 

Consequently, the gravity in the center is 

completely cancelled out.  

 

The ideal solid sphere 

center 
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. The subtraction of the lens shaped body from the sphere leaves a sickle shaped body that 

exerts gravitational forces onto point P. It is located to the left of the lens shaped body. Clearly, 

the masses influential to P are not symmetrical anymore; therefore, P is subjected to gravity. 

Surprisingly, the radius r and the mass m of the sphere are now irrelevant for further gravity 

calculations, as they are part of the gravity free lens. Of importance is only the sickle shaped 

body. 

(Compare to the results of the integral calculation by Alonso and Finn, where r and m are 

substantial for the determination of gravity.) 

 

 2.   Gravity on the inside of a hollow sphere 

According to the integral calculation method, the inside of a hollow sphere is free of gravity. 

Figure 11 displays a hollow sphere centered within a solid sphere. The hollow (mass free) sphere 

is big enough to allow a full orbit of point P around its center. In addition, Figure 11 shows the 

gravitational forces and radius. The radius r from the integral method has been turned into r vis., 

because the inner orbits of P are only visual orbits. 

After evaluating the schematic illustration of all orbits and graphs, it should be clear that only the 

mass of the sickle shaped body outside of the hollow sphere exerts gravity on point P. The force 

of this gravity shall not be determined in this context. This is done and thoroughly explained in 

the “many-body problem in the calculation of galaxies” by Krause (2005a). Instead of using the 

masses, the forces of all measuring points are added and combined in a single rotation point at a 

distance r grav. from point P. The following mass equivalent produces the desired results: 

 

   r turns into r grav.  (F8) 

 

  

Figure 10 

When moving point P toward the edge of the 

sphere, the cancellation of gravitational forces 

remains the same, as long as the masses have 

the same distance from point P and are exactly 

opposite each other. P is in the center of a lens 

shapes body that is free of gravity (only 

pertaining to P). This shape is symmetrical to 

the line that runs through P and is orthogonal 

to the radius of the sphere, as shown in a 

darker shade of gray. The height of the body is 

 

 

The ideal solid sphere 

center 
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Figure 11  

 

 
 

The discrete calculation cannot be done with a single formula. A body has to be divided in the 

largest possible number of single points. Such a grid lining produces a number of single 

calculations that need to be added for a result. Thanks to computers, this is easily done with an 

EXCEL data sheet. For the examples in this paper, the EXCEL program calculates with 5065 

mass points and 10 measuring points (+1 center point). The program has to determine the forces 

of 5064 mass points on each of the measuring points, which leads to a sum of over 50,000 single 

calculations. Because of the gridding, the results are off by about 1%, which is usually a 

tolerable discrepancy. 

 

 

 

 

A hollow sphere within the ideal solid sphere 

Forces within and 

outside of the sphere 

with a completely 

homogenous mass 

distribution 
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Figure 12      

 
The two graphs in Figure 12 represent the results of a hollow sphere (on the left) and a solid 

sphere calculation (on the right). The gravity on P on the inside as well as on the outside are 

illustrated. These results are similar to those determined with the integral center-oriented 

calculation method.  

 

 

 

 

 

The labor, however, for the discrete calculation is more intense. Nevertheless, the discrete 

method leaves the option to change the masses within their symmetry. This produces mistakes in 

the integral calculation (…errors occur if the examined body has a different symmetry (p.7)). 

A comparison of both methods raises the question why the results are equal, even though the 

start variables (r, M) could not be more different. 

 

The discrete measuring point-oriented and integral center-oriented calculation methods 

produce the same results for gravitational forces inside and outside a solid homogenous or 

hollow sphere. 

Figure 13 

The two curves for the gravity exerting masses on 

P are very different in and around the solid 

sphere. The discretely determined mass values 

approach the absolute mass value, but never reach 

it - even on outside of the sphere, because the 

forces of masses at 180  counteract each other. 

Their counteraction changes depending on the 

angle. The integral curve reaches its maximum on 

the outside, where it is equal to the absolute mass 

of the sphere. Logically, with the different masses 

but equal results, the radius curves are different as 

well (Figure 14).    

Comparison of mass increase in the two models  
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Figure 14 

Figure 14 

 

Figure 15 

 
 

 

The radius of the integral calculation 

increases steadily and indicates the 

distance between point P and the 

center of the sphere.  The radius of the 

discrete calculation shows the distance 

between point P and the gravitational 

rotation point of all relevant masses. 

This radius r grav is different from the 

visual radius g vis, because P moves on 

a libration track, not the gravitational 

orbit. This libration orbit is only the 

visible orbit of P around the center of 

the sphere.  

 

 

 

 

 

 

Consequently, any further calculation 

of these different values for mass and 

radius produces different results, for 

example, the determination of the 

visual orbital speed of P around the 

center of the sphere. 

The speed of P calculated with the 

discrete method is greater at the edge 

of the sphere than that of the integral 

method. 

This does not change even if more 

mass is added to the sphere’s center 

and the masses are not distributed 

evenly anymore.  

Comparison of radius size in the two 

models 

Comparison of visual orbital speed of P in the 

two models 
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Summary 

     A comparison of the two calculation methods reveals that they produce different results, with 

the exception of the gravitational force in a homogenous symmetrical sphere. Even though the 

integral calculation method is the easier and faster method, it has its limitation: The values for 

the gravitational force are only correct when the body is absolutely homogenous and 

symmetrical. 

The discrete calculation method delivers correct results for any sphere symmetrical body, 

regardless of its mass distribution. In addition, the basis values for the gravity calculation (mass 

and radius) are different in either model, which means that any further calculation will most 

likely lead to different results.  

The discrete method has the advantage of using the gravitational orbit for its calculation of the 

visual orbital speed. Masses on either orbit take the same time for one complete rotation, but 

their speed is different, which has far reaching consequences. If the mass of a distant galaxy is 

determined over its visual orbital speed, the integral method delivers a result that is too big. This 

error in calculation is the basis for the crazy assumption that an invisible dark matter exists 

(Krause, 2005b).  

 

Why do both methods produce correct results for the gravity in a homogenous symmetrical 

sphere? 

     The integral formula is based on two major mistakes. The mathematical steps are correct, but 

two errors in logic cause a faulty derivation. One of these errors is very field specific: The 

masses are combined over their potential V and not over their gravitational force G or F. Such a 

calculation ignores the direction of force until the formula is transformed into a vector formula 

with a common direction . (See (F4) in (F5) and (F6)). This transformation is incorrect, 

because the direction of force pertaining to point P cannot be derived from the formula for the 

potential.  

 

The following thorough examination of the formulas points out the mistake:  

 

 The first error is done in formula (F1.1), where the gravitational force of a strip (F or G) 

(the gravity potential V) on point P is assumed to be too large. At this point, the 

counteraction of masses is not included in the calculation. The reduction of forces (of the 

potential) should have been done with the help of a parallelogram of forces. As P moves 

closer to the outside surface of the sphere, the angle ( ) between the masses grows. 

Consequently, the counteraction between masses increases (Figure 16).  

By neglecting this counteraction, the potential of each strip is set too high. A correct 

calculation can be found in the “Many-body problem” by Krause (2005a) in this forum.  
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 Figure 16 

 
Only a part of the forces influences point P gravitationally (illustrated by the blue 

arrows). The same applies to the lower half of the sphere and to the strips that are on the 

sphere. If, for example, P lies in the center of the strip (to the right), all the forces 

counteract each other (G=0). 

 

 The second mistake is located in 

formula (F3), where the forces are 

too small. The reason for this lies 

in the summarizing of potentials 

(forces of all strips) in the center of 

sphere masses (blue circle in 

Figure 17), not in the gravitational 

center of forces (pink circle in 

Figure 17). This mistake is 

specific to the field of gravity 

calculations as well. By combining 

the masses in the center of the 

sphere, the distance from P 

increases more than it would if the 

masses were combined in the 

gravitational center. r versus rgrav . 

Parallelogram of forces and  

Figure 17 

Combination of mass strips and their gravity on 

pointP 
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Consequently, the potential is too small. How to add the single masses correctly is 

explained in the “Many-body Problem” by Krause (2005a). 

 

 Both mistakes incidentally cancel each other out throughout the whole calculation. The 

end result is correct, even though the calculation is faulty. 

 

 

 

 

 

 

 

 

 

Derivation of gravity in a ‘hollow’ plane 

     The derivation of gravity in a plane is possible with the help of the sphere model. The first 

step is to take an ideal hollow sphere with a homogenous mass distribution on its surface. The 

gravitational forces in the center of the sphere are nonexistent. Point P divides the sphere into 

two halves if a line orthogonal to r with the distance r is drawn through P. All the masses in the 

segment facing away 

from the center of the 

sphere exert a 

gravitational force that 

pulls P away from the 

center. This gravity 

shall be called negative 

gravity. The masses in 

the opposite sphere 

segment pull P toward 

the center, which shall 

be called positive 

gravity. The positive 

and negative gravities 

are identical in 

strength, but pull P in 

opposite directions. 

The counteraction of 

gravities results in a 

nonexistent gravity for 

point P.  

 

Due to the facts that the integral center-oriented method delivers different results than the 

discrete method in all parameters, and that it relies on a faulty calculation for the 

determination of gravitational forces, it is useless in the field of cosmic calculations.  

Figure 18 

The ideal hollow 

sphere 
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     The second step is to divide the sphere into thin horizontal planes. Two of these planes, which 

are in actuality only mass rings, are used for the following evaluation. One of the plane is the 

mid plane. The center of the sphere is also the center of this plane. The other plane is close to the 

top of the sphere. Its radius is smaller than that of the radius emminating from point P. The 

gravity of all planes combined on P is zero, since the hollow sphere is the sum of all planes.  

The gravitational forces pertaining to P within the small plane are directed toward the center, 

which is illustrated by the arrow pointing in. Consequently, P is exposed to a positive 

gravitational pull. 

The mid plane, however, pulls point P toward the center (pink) and toward the edge (blue). 

Which of these two forces in the mid plane is stronger? Since the sum of all forces on P is zero, 

the force of the mid plane on P must be negative (toward the edge). The reason for this is 

founded in the small plane. For the forces to add up to zero, and the small plane only exerting 

positive gravity, the mid plane’s gravity has to be negative.  

 

Figure 19  

Therefore, the gravity of different 

planes is unequal. Figure 19 

compares the forces of ten planes 

above and below the mid plane. The 

sum of their forces on P is zero.  

The mid plane with point P is 

represented by the pink curve. 

Clearly, the majority of planes exert 

positive gravity, while the pink (and 

yellow) curve delivers the negative 

gravity to facilitate a combined 

force of zero. It should not be 

difficult to see that the calculation 

of gravity in a sphere cannot be 

transferred to a plane.  

 

 

 

 

 

The negative gravity on P increases with a growing distance from the plane’s center.  

A plane with its entire mass at its edge has different gravitational characteristics than a 

homogenous hollow sphere. While the gravity on a point P within the hollow sphere is zero, 

the gravity within a plane is negative (a point P is pulled to the edge). 

Gravity in a plane 
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Derivation of gravity in a ‘solid’ plane 

     The derivation of gravity in a solid plane is similar to that of a hollow plane. The solid sphere 

is divided into a number of thin planes. The mid plane with point P and a plane with a smaller 

radius than that of P 

are evaluated. Because 

of the homogenous 

mass distribution 

throughout the plane, it 

is easy to determine 

the mass needed to 

counteract the blue 

shaded area of negative 

gravity. The pink area 

separated by the blue 

dotted line together 

with the blue area 

shows the lens shape in 

which gravity on P is 

zero. Subtracting this 

lens from the rest of 

the mid plane leaves an 

area of solely positive 

gravity on P, with a 

gravitational center 

that is different from 

the center of the plane.  

 

Figure 21 

compares the forces of ten planes above 

and below the mid plane. The sum of 

their forces on P in the solid sphere is 

linearly increasing as seen in Figure 12 

on the right side. The pink curve 

represents the mid plane with point P. 

   

 

 

 

because the neutral area decreases non-

linear as point P moves closer to the 

Figure 20 

 

The slope of gravity within a 

plane, however, is not linear like 

that of a solid sphere, 

Gravity in a plane 

Ideal solid sphere 



Sphere and plane     18 
 

Copyrights © Matthias Krause, 2005 
 

edge. If the gravity on the outside of the solid mid plane is calculated discretely, it also 

decreases, but not equal to that of a solid sphere. The gravitational center (of the plane) lies 

closer to point P (discretely calculated) than the center of the plane. Consequently, the 

gravitational force on point P in a plane is much stronger than that in a sphere.   

 

Figure 22 

The gravitational forces n a point P 

within and outside of a solid plane as 

calculated with integral and discrete 

methods have absolutely no 

similarities. The pink curve illustrates 

the gravity on a point P determined 

with discrete calculation, while the 

blue curve represents the results of an 

integral calculation.  

 

 

 

 

 

 

 

Comparison of gravity in the integral and discrete model 

     While at least the results of the gravity calculation in and around a homogenous symmetrical 

sphere were equal, a comparison of integral and discrete method applied to a plane reveals that 

none of the values for gravity F, mass 

m, and radius r are similar. The 

enormous differences between the 

two methods are illustrated in Figure 

23.  

The 100% line represents the values 

of gravity determined with the 

integral method. The values above 

this line show the gravitational forces 

for a point P at the edge of the plane 

determined with the discrete method, 

and the values below the 100% line 

stand for the forces for a point within 

the plane also determined with the 

discrete method. The single points in 

Figure 23 

 

Difference between integral and 

discrete method in percent 

Gravitational force on P calculated with discrete 

and integral method 
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Figure 23 represent different distances from the center of the plane, beginning on the left. At 

point 11, the highest marker, all masses in the discrete model exert gravitational force on P. (the 

grid lining prevents this in point 10). The red marker is the first point on the outside of the plane 

at a distance of 12, followed by 15, 30, 45, 60, and 100.  

 

 

 

 

 

 

 

 

 

 

 

Further application of the discrete gravity calculation 

Three examples of the errors that occur with integral calculation are the distance calculation 

of pioneer probes, the light deviation of galactic lenses, and the debatable dark matter.  

 

 A faulty calculation is a very likely explanation for the unexpected, hesitant movement of 

the two pioneer probes out of our solar system. If all masses of our solar system (perhaps 

even the mass of the Oort cloud) are entered in a discrete calculation model, the 

gravitational factor increases by 0.0064% compared to the integral calculation method. 

This sufficiently explains the puzzling brake-effect on the pioneer probe. Hence, there is 

no need to postulate a new energy (NZ Online, 2002)!  

 The tendency of distant galactic gravity lenses to deflect light more intensely than 

calculated is also easily explained. The gravitational force determined with integral 

calculation is too low! A discrete calculation of gravitational forces results in a mass 

equivalent twice as high as previously determined. In addition, the integral calculation 

method uses point masses that are too small (Wambsganss & Schmidt, 2005).  

 The dark matter error is more prevalent in the calculation of field or surface than the 

calculation of spheres, because of the differences in gravitational forces. If the mass of a 

distant field galaxy is determined over the visual orbit speed of its masses (on libration 

tracks), the result of such an integral calculation is always too large. On one hand, the 

base mass is assumed to be too big, and on the other hand, the gravitational orbit is 

confused with the libration track. This double error leads unavoidably to the incorrect 

assumption of an invisible dark matter (Krause, 2005a). 

 

     Three observable – until now- inexplicable phenomenon can be explained with a discrete 

calculation of values and without the assumption of dark matter.  

The discretely determined values for the gravitational force close to the center of a 

homogenous field are considerably smaller than those calculated with the integral method. 

Once the point P is moved close to the edge of the plane, the values of the discrete method 

increase much faster and even double than those of the integral calculation. On the outside of 

the plane, the values of the discrete calculation approach, but never reach the lower values of 

the integral method.   

The integral values for the gravitational forces of a hollow and solid sphere are wrong. 
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